31 research outputs found

    Dynamical Correlation Length near the Chiral Critical Point

    Full text link
    The dynamical evolution of small systems undergoing a chiral symmetry breaking transition in the course of rapid expansion is discussed. The time evolution of the dynamical correlation length for trajectories passing through a second-order critical point is extracted. It is shown that while the maximum value of the correlation length is bound from above by dynamical effects, the time interval during which it is near its maximum grows steadily with the system size and with decreasing expansion rate.Comment: 3 pages, 1 figure; Presented at the International Europhysics Conference on High Energy Physics EPS (July 17th-23rd 2003) in Aachen, Germany; to be published in EPJC; One typo corrected, one reference adde

    Hydrodynamics near a chiral critical point

    Get PDF
    We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to non-equilibrium dynamics of the long wavelength (classical) modes of the chiral condensate. We solve the equations of motion numerically in 3+1 spacetime dimensions. Starting the evolution at high temperature in the symmetric phase, we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its critical endpoint. For those cases, we predict the behavior of the azimuthal momentum asymmetry for highenergy heavy-ion collisions at nonzero impact parameter

    Particle ratios from AGS to RHIC in an interacting hadronic model

    Get PDF
    Abstract: The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) Ã É approach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The inmedium masses turn out to differ up to 150 MeV from their vacuum values

    On the observation of phase transitions in collisions of elementary matter

    Get PDF
    We investigate the excitation function of directed flow, which can provide a clear signature of the creation of the QGP and demonstrate that the minimum of the directed flow does not correspond to the softest point of the EoS for isentropic expansion. A novel technique measuring the compactness is introduced to determine the QGP transition in relativistic-heavy ion collisions: The QGP transition will lead to higher compression and therefore to higher compactness of the source in coordinate space. This e ect can be observed by pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space

    Origins of Bulk Viscosity at RHIC

    Full text link
    A variety of physical phenomena can lead to viscous effects. Several sources of shear and bulk viscosity are reviewed with an emphasis on the bulk viscosity associated with chiral restoration and with chemical non-equilibrium. We show that in a mean-field treatment of the limiting case of a second order phase transition, the bulk viscosity peaks in a singularity at the critical point.Comment: submitted to PR

    Tuning target selection algorithms to improve galaxy redshift estimates

    Full text link
    We showcase machine learning (ML) inspired target selection algorithms to determine which of all potential targets should be selected first for spectroscopic follow up. Efficient target selection can improve the ML redshift uncertainties as calculated on an independent sample, while requiring less targets to be observed. We compare the ML targeting algorithms with the Sloan Digital Sky Survey (SDSS) target order, and with a random targeting algorithm. The ML inspired algorithms are constructed iteratively by estimating which of the remaining target galaxies will be most difficult for the machine learning methods to accurately estimate redshifts using the previously observed data. This is performed by predicting the expected redshift error and redshift offset (or bias) of all of the remaining target galaxies. We find that the predicted values of bias and error are accurate to better than 10-30% of the true values, even with only limited training sample sizes. We construct a hypothetical follow-up survey and find that some of the ML targeting algorithms are able to obtain the same redshift predictive power with 2-3 times less observing time, as compared to that of the SDSS, or random, target selection algorithms. The reduction in the required follow up resources could allow for a change to the follow-up strategy, for example by obtaining deeper spectroscopy, which could improve ML redshift estimates for deeper test data.Comment: 16 pages, 9 figures, updated to match MNRAS accepted version. Minor text changes, results unchange

    Tevatron - probing TeV-scale gravity today

    Get PDF
    The production of black holes at Tevatron and LHC in spacetimes with compactified space-like large extra dimensions is studied. Either black holes can already be observed in ¯ pp collisions at s = 1.8 TeV or the fundamental gravity scale has to be above 1.4 TeV. At LHC the creation of a large number of quasi-stable black holes is predicted, with lifetimes beyond several hundred fm/c. A cut-off in the high-PT jet cross section is shown to be a unique signature of black hole production. This signal is compared to the jet plus missing energy signature due to graviton production in the final state as proposed by the ATLAS collaboration

    Stacking for machine learning redshifts applied to SDSS galaxies

    Full text link
    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4% and 2.5% for the explored metrics and comes at almost no additional computational cost.Comment: 13 pages, 3 tables, 7 figures version accepted by MNRAS, minor text updates. Results and conclusions unchange

    Nichtgleichgewichtsdynamik des chiralen Phasenübergangs in relativistischen Kern-Kern-Kollisionen

    Get PDF
    In meiner Dissertation "Nichtgleichgewichtsdynamik des chiralen Phasenübergangs bei endlichen Temperaturen und Dichten" untersuche ich das Verhalten von stark wechselwirkender Materie bei hohen Temperaturen und Baryonendichten. Diese Form der Materie untersucht man mit Hilfe von Kern-Kern-Kollisionen an großen Beschleunigern am SPS in Genf (Schweiz) und am RHIC in Brookhaven (USA). Die Quantenchromodynamik (QCD) ist bis heute der beste Kandidat für die Theorie der starken Wechselwirkung und sollte daher die verschiedenen Phasen bei allen Baryonendichten und Temperaturen beschreiben. In der Praxis läßt die QCD sich bisher allerdings nur in einigen Grenzfällen, bei denen eine Störungstheoretische Beschreibung möglich ist, lösen. Daher ist es notwendig, bei endlichen Temperaturen und Baryonendichten effektive Modelle zu entwickeln, welche dann nur den grundlegenden Eigenschaften der QCD Rechnung tragen. Untersuchungen haben ergeben, daß die QCD zwei unterschiedliche Phasenübergänge beinhaltet. Zum einen den sogenannten Deconfinement-Phasenübergang von Kernmaterie zu einem asymptotisch freien Zustand, dem Quark Gluon Plasma, und zum anderen den chiralen Phasenübergang von massiven zu masselosen Teilchen. Gittereichtheoretische Rechnungen haben darüber hinaus gezeigt, daß es im Phasendiagramm einen kritischen Punkt und es Phasenübergänge erster Ordnung und sogenannte Crossover-übergänge gibt. In meiner Arbeit habe ich ein Modell verwendet und weiterentwickelt mit dem es möglich ist, den sogenannten {\em chiralen Phasenübergang} im Nichtgleichgewicht zu untersuchen. Dabei betrachte ich den übergang von masselosen (bei hohen Temperaturen und Baryonendichten) zu massiven Quarks (bei niedrigen Temperaturen und Baryonendichten). Der Schwerpunkt meiner Arbeit liegt auf den Nichtgleichgewichtseffekten des chiralen Phasenübergangs. Solche Nichtgleichgewichtseffekte sind zum Beispiel der Siedeverzug, wie man ihn manchmal beim Kochen von Wasser in einem Reagenzglas vorfindet. Auch hier wird die zeitliche Entwicklung des Systems durch Nichtgleichgewichtseffekte stark verändert, das Wasser kocht nicht einfach nur, sondern es verdampft schlagartig. Ziel meiner Arbeit ist es nun, den Einfluß von Nichtgleichgewichtseffekten auf den chiralen Phasenübergang in Kern-Kern-Kollisionen und insbesondere den Einfluß des kritischen Punktes zu untersuchen. Um mehr über den Phasenübergang im Nichtgleichgewicht herauszufinden, bietet es sich an, Fluktuationen bestimmter thermodynamischer Größen und ihren Einfluß auf Observablen zu untersuchen. Hierzu werden Fluktuationen in die Anfangsbedingungen der numerischen Simulationen eingefügt und untersucht, wie sich jeweils die zeitliche Entwicklung des Systems verhält. Zunächst habe ich die zeitliche Entwicklung der Fluktuationen in Abhängigkeit von der anfänglichen Systemgröße untersucht. Für ein unendliches System würde man am kritischen Punkt eine divergierende Korrelationslänge der Fluktuationen erwarten. Bei einer Kern-Kern-Kollision ist die Größe des Systems hingegen endlich und das System expandiert sehr schnell. Meine Ergebnisse zeigen, daß für alle untersuchten Systemgrößen die Korrelationslänge maximal 2-3 mal so groß wie die anfängliche Korrelationslänge wurde. Es ist daher zweifelhaft, ob dieser Effekt in Kern-Kern-Kollisionen gemessen werden kann. \\ Daher habe ich im weiteren untersucht, wie sich die anfänglichen Fluktuationen des Ordnungsparameters auf die Entwicklung der Energie- und Baryonendichte des Systems auswirken. Die Ergebnisse zeigen, wie Inhomogenitäten von Energie- und Baryonendichte durch die Anwesenheit von verschiedenen Phasenübergängen beeinflußt werden. Während die Inhomogenitäten der Energiedichte sich nur wenig unterscheiden, zeigt sich bei der Baryonendichte ein anderes Verhalten. Für Phasenüberänge erster Ordnung sind die Inhomogenitäten deutlich höher als für Crossover-übergänge. Dies könnte sich unter anderem in der relativen Häufigkeit bestimmter Teilchenspezies wie der Kaonen und Pionen bemerkbar machen
    corecore